Editorial Focus: Prostaglandin riddles in energy metabolism: E is for excess, D is for depletion. Focus on “Food deprivation alters thermoregulatory responses to lipopolysaccharide by enhancing cryogenic inflammatory signaling via prostaglandin D₂”

Andrej A. Romanovsky and Andras Garami
Systemic Inflammation Laboratory, Trauma Research, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona

Submitted 13 April 2010; accepted in final form 16 April 2010

THIS EDITORIAL FOCUS FEATURES A paper by Krall et al. (12) from the laboratories of two young investigators at Albany (New York) College of Pharmacy: Alex Steiner and Carlos Feleder. Both have already published their first independent studies (32, 37, 38), and their collaborative work highlighted herein continues this series of exciting projects and expands it to study the central mechanisms of the effect of food deprivation on the thermoregulatory response to systemic inflammation. The spotlight in this work is on PGE₂ and PGD₂. Whereas the role of the former in energy metabolism and inflammation is well established, particularly as a mediator of fever, the role of the latter is less clear.

The study by Krall et al. (12) reports, among other findings, that administration of PGD₂ into the lateral cerebral ventricle of the rat produces a weak hypothermic response. This observation finds support in several studies (Table 1), including an early study from the group of Osamu Hayaishi (36), author of many discoveries in the biology of PGD₂ (15, 17, 22). By the same token, the hypothermic activity of PGD₂ contradicts multiple reports in rats, rabbits, and cats, showing that PGD₂ either does not affect body temperature or causes hyperthermia (Table 1). One such report (5) is coauthored by Anthony Milton, a pioneer in studying thermoregulatory effects of prostanoids and discoverer of the pyrogenic activity of PGs of the E and F series (16). Is it possible that PGD₂ possesses a dual thermoregulatory action and can either decrease or increase body temperature?

The complex biology of PGD₂ makes such a proposition plausible and provides plenty of potential mechanisms, including dose-dependent (6, 11, 22) and species-specific (13) ones. The instability of PGD₂, due to its rapid enzymatic and non-enzymatic metabolism via multiple pathways, can also be a contributing factor. Some PGD₂ metabolites are thought to be biologically inactive, and the authors of the highlighted paper (12) observed that the hypothermic activity disappeared when stock solutions of PGD₂ were stored for >3 wk at −80°C. Other metabolites, including several PGs of the J series with a cyclopentenone structure, are biologically active and, moreover, can affect body temperature. For example, 15-deoxy-Δ₁₂,14-PGJ₂ has been reported to be both antipyretic (18) and pyrogenic (A. A. Steiner, A. S. Dragic, J. Pan, A. A. Romanovsky; unpublished observation; cited from Ref. 30) in rats. It has also been shown that the thermoregulatory action of PGD₂ can depend on the route of administration (29) and be site specific within the brain (36), even though the current knowledge about specific sites and mechanisms of the central action of PGD₂ is sketchy. It was thought originally that its receptor (DP, presently known as DP1) is widely distributed throughout the brain, as mentioned in the highlighted paper (12). However, more recent studies with a specific antibody have shown that DP1 immunoreactivity is concentrated in the limited area of leptomeninges of the basal forebrain, where it is often colocalized with lipocalin PGD synthase (17). This area is in close proximity to the ventrolateral preoptic area (a “sleep center”), and the DP1 receptor in the subarachnoid space of the basal forebrain is thought to trigger the effects of PGD₂ on sleep (8). In addition to DP1, PGD₂ can also act through a distinct receptor type, DP2 (also known as the chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells, or CRTH2) and through several other prostanoid receptors, perhaps different receptors in different species (34), as well as via a non-receptor-mediated mechanism.

An important methodological issue that cannot be neglected is that the thermoregulatory effect of a compound often strongly depends on the ambient temperature, especially in small rodents. Many adrenergic compounds (39), drugs of abuse (19), LPS (33), platelet-activating factor (10), and other substances cause hyperthermia in a thermoneutral environment but cause hypothermia under subneutral conditions. It is, therefore, critical to conduct thermophysiological experiments in rats and mice at a tightly controlled ambient temperature. It is also important to determine whether this temperature is neutral, subneutral, or supraneutral in each experimental setup, because the thermoneutral zone for the same animal in different setups varies widely, depending on several physical factors that affect heat exchange between the animal and its environment (25). One way to determine whether the conditions in a given setup are thermally neutral, subneutral, or supraneutral is by assessing tail skin blood flow, e.g., by thermometry or thermography (25), and several laboratories now use this approach for experiments in rats (1, 4) and mice (27). From this point of view, the work of Krall et al. (12) is impeccable. In addition to determining the thermoneutral zone in their setup and using properly characterized thermal conditions, the authors also took an important precautionary step in making all injections through preimplanted cannulas, without touching the animals, thus minimizing the associated stress and avoiding stress hyperthermia. Stress hyperthermia due to drug administration has been shown to strongly affect thermal responses. For example, it can...
The early febrile phase and modify the later phases of LPS fever (24). Because the physiological experiments of Krall et al. (12) were conducted expertly, their study leaves little doubt that PGD2 can decrease body temperature in rats, at least under some conditions.

Besides decreasing body temperature, PGD2 is thought to induce sleep (8), increase food intake (21), and cause analgesia (23) (Fig. 1). Interestingly, these effects are the exact opposite of those produced by the fever mediator, PGE2, which is generally thought to cause wakefulness (8), decrease food intake (20), and induce hyperalgesia (28). Remarkably, these PGE2- and PGD2-mediated responses form distinct patterns that can be seen, respectively, during the first phase of LPS fever, which is mediated by PGE2 (2, 31), and during LPS hypothermia, which is thought to be mediated by PGD2 (36).

We have called these two patterns the early and the late sickness syndromes, respectively, and proposed that they represent two different, sequential stages of the sickness syndrome (26). As a general rule, the early phase syndrome develops in a previously healthy organism, at the onset of its response to an infection. The late phase syndrome occurs when the organism is already exhausted by the preceding early phase syndrome, weakened by a preexisting pathology, or exposed to a severe, damaging homeostatic challenge. The biological significance of the early phase syndrome is the signaling of the pathogenic challenge (hyperalgesia), recruiting active defense mechanisms (fever), and securing the means (wakefulness, motor agitation, and arterial hypertension) change into sleep, motor depression, and normo- or hypotension, respectively. An elevated body temperature remains potentially beneficial, but its benefits could now be easily offset by the harmfully high energetic cost. Responding to this delicate balance, threshold dissociation develops, thus allowing body temperature to be maintained at either an elevated level or, if the cost-benefit ratio is especially unfavorable (e.g., in a cold environment), at a lowered level. Several energy-saving symptoms of the late phase syndrome, including sleep and motor depression, have been either proposed or directly shown to be beneficial during infection, and the conservation of energy is probably the primary role of this syndrome (26). Consistent with such a role, Krall et al. (12) report that the hypothemic effect of PGD2 is enhanced following food deprivation. This is a new observation, which may be important for understanding mechanisms of thermoregulatory and other physiological responses to decreased food supply. Such mechanisms are currently being studied in several laboratories (9, 35), and the involvement of central PGD2 proposed by Krall et al. (12) identifies a new lead for this research.

In conclusion, whereas the effects of PGE2 are those occurring when energy is readily available, the highlighted study from the laboratories of Alex Steiner and Carlos Feleder (12) shows that PGD2 may mediate responses occurring when

![Fig. 1. The chemical structures and some physiological, brain-mediated effects of PGE2 and PGD2. PGE2 causes fever by acting on EP3 receptors in the median preoptic nucleus (14). PGD2 causes sleep by acting on DP1 receptors in the leptomeninges of the basal forebrain (17). Both sites are schematically shown.](image-url)
energy resources are threatened or depleted. E is for excess; D is for depletion. There is also an A in this story: it goes to the Albany College of Pharmacy for establishing the young, vibrant, and highly promising program in the physiology and pharmacology of systemic inflammation.

GRANTS
The authors’ published and unpublished research cited in this editorial is supported, in part, by National Institute of Neurological Disorders and Stroke Grant R01-NS-41233.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES