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mediate their cosmopolitan regulatory duties. Structural 
studies provide important clues to the nature and function 
of associations between sigma factors and DNA. In a new 
study, William Lane and Seth Darst used structural analysis 
techniques to determine the detailed shape of one type of 
sigma factor. They show that it binds to short DNA sequences 
using a molecular recognition method that has not been seen 
before in sigma factors.

Sigma factors come in two structurally unrelated families: 
sigma 54 and sigma 70. The sigma 54 family is associated 
with a diverse range of metabolic processes. The much 
larger sigma 70 family encompasses four groups: the Group 
I “primary” sigma factors facilitate metabolic and growth 
processes; the Group II–IV “alternative” sigma factors 
mediate specialized processes like sporulation and the 
environmental stress response. The sigma 70-type sigma 
factors recruit the RNA polymerase holoenzyme to bipartite 

promoter sequences, comprising conserved sequence 
elements centered about 10 and 35 base pairs upstream of the 
transcription start site. These so-called –10 and –35 elements 
are recognized by distinct structural domains of the sigma 
factor. Structures of one of the most studied sigma factors, 
a primary sigma factor called sigma-A, have been solved in 
previous studies. Here, Lane and Darst analyzed the –35-
element-binding domain (domain 4) of an alternative Group 
IV sigma factor found in Escherichia coli, called sigma E4. 
Group IV sigma factors comprise the largest and most diverse 
set of sigma factors.

Both sigma-A4 and sigma-E4 allow RNA polymerase to bind 
to the –35 promoter element, but in each case the sequence 
is very different. In the case of sigma-E4, the sequence is 
GGAACTT (and others that resemble it). Previous studies 
showed that sigma-A4 recognizes its consensus sequence, 
TTGACA, through direct interactions with these six 
nucleotide bases. It was tempting to assume that sigma-E4 
would operate in a similar manner, since the two sigma 
factors are similar in structure.

But, using X-ray crystallography, Lane and Darst showed 
that sigma-E4 binds its consensus sequence using a more 
subtle method. By determining the structure of the sigma 
factor bound to its consensus sequence, they found that 
sigma-E4 doesn’t recognize the identity of the sequences per 
se but the shape of the DNA helix at those sequences. While 
one region of the sigma factor sits deep within a groove along 
the double helix’s side, another region holds the promoter 
–35 sequence straight. The AA in the center of sigma-E4’s 
consensus sequence, the researchers believe, is required for 
the DNA to assume this shape.

Because evolution has conserved the site in these proteins 
that sits alongside the AA of the consensus sequence, Lane 
and Darst propose that this method of recognizing –35 
promoter sequences may be common across the Group IV 
sigma factors. With further studies of the structures of sigma 
factors and their means of recognizing specifi c promoters—
and thus activating specifi c genes—researchers can better 
predict the full complement of genes a given promoter 
will regulate, and in turn gain insight into the diverse 
physiological responses they help mediate.
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A crystal structure of domain 4 of an E. coli Group IV sigma 
factor bound to –35 element DNA identifi es a unique interaction 
mechanism that relies on the rigid conformation of the DNA 
consensus sequence.

Many parents experience fear and anxiety when their child 
comes down with a fever, unaware that fever is an ancient, 
often benefi cial, response to infection. The fever response is 
conserved across all mammals and many vertebrate classes. 
(Even reptiles and other cold-blooded animals fare better 
against infection when they develop fever by soaking up 
the sun’s heat.) Among other potential adaptive benefi ts, a 
higher temperature can inhibit the growth of bacterial strains 
that lack sophisticated mechanisms for coping with heat 
shock.

Fever, which is mediated by a lipid called prostaglandin 
E2 (PGE2), can pass through multiple temperature phases. 

While it’s well established that PGE2 originating in brain cells 
causes the second and later phases, the initial phase of fever 
has proven diffi cult to characterize. Of particular interest is 
whether fever onset is triggered by PGE2 that originates inside 
or outside the brain—a question that has dogged researchers 
for nearly three decades. Now, Alexandre Steiner, Andrej 
Romanovsky, and colleagues provide evidence that PGE2 
synthesis doesn’t begin in the brain as previously thought, 
but in the lungs and liver. They also describe the molecular 
mechanisms that produce PGE2 in these organs.

Many of the mechanisms of fever have been established 
by exposing rodents to bacterial endotoxins called 

Anatomy of a Fever
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lipopolysaccharides (LPS). The fi rst phase of LPS-induced 
fever starts within 30 minutes after exposure to the pyrogen. 
During the second and subsequent phases—between 90 
minutes and 12 hours after LPS administration—brain 
cells increase production (called upregulation) of enzymes 
involved in PGE2 synthesis. Thus, fever starts about an hour 
before the PGE2-synthesizing enzymes—cyclooxygenase-2 
(COX-2) and microsomal PGE synthase-1 (mPGES-1)—are 
upregulated in the brain, suggesting that fever must be 
triggered by PGE2 produced peripherally, outside the brain.

To test this hypothesis, Steiner et al. gave rats an 
intravenous (IV) solution of PGE2 bound to albumin, the 

primary transporter of PGE2 in the blood. Controls received 
an IV albumin solution. After confi rming that the PGE2 
infusion induced fever, the researchers collected venous and 
arterial blood from LPS-treated rats. (PGE2 synthesized in 
tissues amasses in venous blood; arterial blood delivers PGE2 
to the brain.) At the onset of fever, PGE2 was signifi cantly 
elevated both in the venous and arterial blood.

To investigate the origin of fever-inducing PGE2, Steiner 
et al. used an antibody-based technique. (Antibodies are too 
large to cross the blood–brain barrier.) Rats were pretreated 
with IV anti-PGE2 antibody serum (controls received normal 
serum) and then injected with IV LPS. The fi rst phase of LPS 
fever was signifi cantly attenuated by the antibody (but not the 
serum), which was found in the blood but not in the brain. 
These results show that LPS-induced fever is triggered by 
circulating PGE2.

A previous study from the Romanovsky laboratory reported 
that onset of fever is accompanied by signifi cantly increased 
transcription of COX-2 and mPGES-1 in the lung and liver, 
and a moderate increase of the COX-2 transcript in the 
hypothalamus (the body’s “fever center”). In this study, they 
examined the protein distribution of these enzymes in all 
three tissues. After LPS exposure, the content of neither 
protein was increased in the hypothalamus. But the lung 
and liver did show increased COX-2 expression—primarily 
in macrophages, which play a role in the infl ammatory 
response—along with activation of an enzyme (cytosolic 
phospholipase A2) involved in the early steps of PGE2 
synthesis. These organs, but not the hypothalamus, also 
showed signs of infl ammatory signaling. Interestingly, the 
researchers did not fi nd increased levels of mPGES-1, which 
facilitates the fi nal step of PGE2 synthesis, suggesting that the 
cell’s normal supply of this enzyme manages the task.

Altogether, these results provide a cellular and molecular 
portrait of the fi rst phase of fever and show that it depends, at 
least in part, on PGE2 that originates in peripheral tissues.
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Cyclooxygenase-2 (green immunofl uorescence) and the 
macrophage marker ED2 (red immunofl uorescence) in rat lung at 
the onset of bacterial lipopolysaccharide-induced fever (photo: 
Jordi Serrats).
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The embryonic construction of 
the vertebrate retina is a highly 
ordered affair. Following a precise 
timetable, six different specialized 
cell types emerge from a mass of 
identical, proliferating cells. The 
process of retinal cell differentiation, 
when so-called progenitor cells 
stop dividing and choose among 
the six fates, depends primarily on 
homeobox genes, major regulators 
of embryonic patterning. How these 
genes control the timing of retinal cell 
differentiation has remained an open 
question—until now.

In a new study, Sarah Decembrini, 
Federico Cremisi, and colleagues 

show that three homeobox genes 
work in conjunction with a cellular 
timepiece that determines the 
sequential emergence of distinct cell 
types. Surprisingly, the schedule of 
both homeobox gene expression and 
retinal cell differentiation is controlled 
by the translation, rather than by the 
transcription, of the genes.

Retinal cells transform light 
signals into visual information for 
further processing in the brain. After 
light stimulates the rod and cone 
photoreceptors, visual signals travel 
to horizontal and bipolar cells, which 
in turn interface with amacrine cells. 
Ganglion cells, which then relay these 

signals to the brain, are the fi rst-born 
cells—that is, the fi rst to exit the cell 
cycle and stop dividing. Though their 
birthdays vary somewhat by species, the 
horizontal, cone, and amacrine cells 
come next, then the rod and bipolar 
cells.

Decembrini et al. suspected that 
cell identity may be tied to cell cycle 
progression because different retinal 
cell types are produced when cell 
cycle length is manipulated. To 
test this hypothesis, they studied a 
subset of homeobox genes, including 
otx5, which supports photoreceptor 
differentiation, and vsx1 and otx2, 
which promote bipolar differentiation. 
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